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1. Introduction 

By Λ represent the set of all sequences with complex terms and note that any subspace of Λ is said to 
be as a sequence space. By symbols N and C, we represent the set of non-negative integers and the set of 

complex numbers, respectively. As in [7, 15, 16], we denote by ℓ∞, c and c0, respectively, the space of all 
bounded sequences, the space of convergent sequences and the sequences converging to zero. Also, by 
ℓ1, ℓ(p), cs and bs we denote the spaces of all absolutely, p-absolutely convergent, convergent and 
bounded series, respectively, as can be seen in [8, 18, 44]. 

As in [9]-[27], for an infinite matrix T = (ti,j) and ν = (νk) ∈ Λ, the 

T-transform of ν is Tν = {(Tν)i} provided it exists ∀ i ∈ N, where 

. 

For an infinite matrix T = (ti,j), the set GT , where 

 GT = {ν = (νj) ∈ Λ : Tν ∈ G}, (1) 

is known as the matrix domain of T in G [30, 31, 40]. 

A infinite matrix G = (ϱnk) is said to be regular if and only if the following conditions hold: 
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. 
n 

Let (qk) be a sequence of positive numbers and let us write, Qn = P qk 

k=0 

for n∈ N. Then the matrix Rq = (rnkq ) of the Riesz mean (R,qn) is given by 

 , if 0 ≤ k ≤ n, 

 0 if k > n 

The Riesz mean (R,qn) is regular if and only if Qn → ∞ as n → ∞ as can be seen in [35, 42]. 

Quite recently, in [38], the author has introduced the following: 

 

where, 0 < pk ≤ H < ∞. 

In [29], the author introduced the following difference sequence spaces 

W(△) : 

W(△) = {ζ = (ζk) ∈ Λ : (△ζk) ∈ W}, 

where, W ∈ {ℓ∞,c,c0} and △ζk = ζk − ζk+1. 

In [2], the author has studied the sequence space as 

, 

where 1 ≤ p < ∞. With the notation of (1), the space bvp can be redefined as 

bvp = (lp)△,1 ≤ p < ∞ 

where, △ denotes the matrix △ = (△nk) defined as 

  (−1)n−k, if n − 1 ≤ k ≤ n, 

 

△nk = 

  0, if k < n − 1 or k > n. 
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In [32], the author introduced the concept of modulus function. We call a function F : [0,∞) → [0,∞) 
to be modulus function if 

(i) F(ζ) = 0 if and only if ζ = 0, 

(ii) F(ζ + η) ≤ {(ζ) + {(η) ∀ ζ ≥ 0,η ≥ 0 

(iii) F is increasing,and 

(iv) F is continuous from the right at 0. 

One can easily see that if F1 and F2 are modulus functions then so is F1 + F2; and the function Fj (j ∈ N), 
the composition of a modulus function F with itself j times is also modulus function. 

Recently, in [36] the new space was introduced by using notion of modulus function as follows: 

 

The approach of constructing a new sequence space by means of matrix domain of a particular 
limitation method has been studied by several authors. (ℓ∞)Nq and cNq(see, [43]), (ℓp)C1 = Xp and (ℓ∞)C1 = 

X∞(see,  and ( (see, [28]), (  

(see, [1]), (  and (see, [3]), [ ) and 

) (see, [4], rq(u,p) = {l(p)}Ruq (see, [38])and etc. 

2. The sequence space rFq (△ps) of non-absolute type 

In this section, for s ≥ 0, we define the Riesz sequence space ) , and prove that the space ) 
is a complete paranormed linear space and show it is linearly isomorphic to the space l(p). 

Let Λ be a real or complex linear space, define the function τ : Λ → R with R as set of real numbers. 

Then, the paranormed space is a pair (Λ;τ) and τ is a paranorm for Λ, if the following axioms are satisfied 
for all ζ, η ∈ Λ and for all scalars β: 

(i) τ(θ) = 0, 

(ii) τ(−ζ) = τ(ζ), 

(iii) τ(ζ + η) ≤ τ(ζ) + τ(η),and 

(iv) scalar multiplication is continuous, that is, 

|βn − β| → 0 and h(ζn − ζ) → 0 imply τ(βnζn − βζ) → 0 for all β′s in R and ζ′s in Λ , where θ is a zero vector 

in the linear space Λ. Assume here and after that (pk) be a bounded sequence of strictly positive real 

numbers with suppk = Hand M = max{1,H}. Then, the linear space 

k 

ℓ∞(p) was defined by Maddox [30] as follows : 

ℓ∞(p) = {ζ = (ζk) : sup|ζk|pk < ∞} 
k 

which is complete space paranormed by 

. 
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We shall assume throughout that  provided 1 < infpk≤ H < ∞, and we denote the collection 
of all finite subsets of N by F, where N={0, 1, 2, ... }. 

Following Altay et al. [1]-[2], Ba¸sarir et al. [5], Choudhary et al. [6], Ganie et al. [9, 18], Ruckle [36], 

Sengo¨nu¨l [37], Mursaleen [33], Sheikh et al. [38]-[41], we define the difference sequence space

) as follows: 

 

where, 0 < pk ≤ H < ∞ and s ≥ 0. 

By (1), it can be redefined as 

. 

Define the sequence ξ = (ξk), which will be used, by the RFq △gtransform of a sequence ζ = (ζk), i.e., 

 . (2) 

Now, we begin with the following theorem which is essential in the text. 

Theorem 2.1. rFq (△ps) is a complete linear metric space paranormed by h△, defined as 

 

with 0 < pk ≤ H < ∞. 

Proof: The linearity of ) with respect to the co-ordinatewise addition and scalar multiplication 

follows from from the inequalities which are satisfied for )( see [14], p.30] ) 

 

  (3) 

and for any α ∈ R (see, [13]) 

 |α|pk ≤ max(1,|α|M). (4) 

It is clear that, h△(θ)=0 and h△(ζ) = h△(−ζ) for all ζ ∈ rFq (△ps). Again the inequality (3) and (4), yield the 

subadditivity of h△ and 
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h△(αζ) ≤ max(1,|α|)h△(ζ). 

Let {ζn} be any sequence of points of the space ) such that h△(ζn − ζ) → 0 and (αn) is a 

sequence of scalars such that αn → α. 

Then, since the inequality, 

h△(xn) ≤ h△(x) + h△(xn − x) 

holds by subadditivity of h△, {h△(ζn)} is bounded and we thus have 

 

 1 1 

≤ |αn − α|M h△(ζn) + |α|M h△(ζn − ζ) 

which tends to zero as n → ∞, which shows that the scalar multiplication is continuous. Hence, h△ is 

paranorm on the space . 

It remains to prove the completeness of the space ). Let {ζj} be any Cauchy sequence in the space

), where . Then, 

for a given ϵ > 0, there exists a positive integer n0(ϵ) such that 

 h△(ζi − ζj) < ϵ (5) 

for all i,j ≥ n0(ϵ). Using definition of h△ and for each fixed k ∈ N, we have 

 

for i,j ≥ n0(ϵ), which leads us to the fact that {(RFq △sζ0)k,(RFq △sζ1)k,...} is a Cauchy sequence of real 
numbers for every fixed k ∈ N. Since R is complete, it converges, say, (RFq △sζi)k → ((RFq △sζ)k as i → ∞. 

Using these infinitely many limits (  , we define the sequence {(RFq △sζ)0,(RFq 

△sζ)1,...}. From (5) for each m ∈ N and i,j ≥ n0(ϵ), 

 . (6) 

Take any i,j ≥ n0(ϵ). First, let j → ∞ in (6) and then m → ∞ , we 

obtain 

h△(ζi − ζ) ≤ ϵ. 

Finally, taking ϵ = 1 in (6) and by letting i ≥ n0(1), we have by Minkowski’s inequality for each m ∈ N 
that 
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which implies that ). Since h△(ζ − ζi) ≤ ϵ for all i ≥ n0(ϵ), it follows that ζi → ζ as i → ∞, hence 

we have shown that ) is complete, hence the proof of the theorem follows. 

Note that one can easily see the absolute property does not hold on the spaces , that is, h△(ζ) ̸= 

h△(|ζ|) for atleast one sequence in the space ) and this says that ) is a sequence space of 

nonabsolute type. 

3. Inclusion relations 

In this section, we investigate some of its inclusions properties . 

Theorem 3.1. For s ≥ 0, if pk and tk are bounded sequences of positive real numbers with 0 < pk ≤ tk < ∞ for 

each k ∈ N, then for any modulus function . 

Proof: For ) it is obvious that 

. 

Consequently, for sufficiently large values of k say k ≥ k0 for some fixed k0 ∈ N. 

. 

But F being increasing and pk ≤ tk, we have 

. 

From this, it is clear that ) and the result follows.⋄ 
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